
 Is Soundex Good Enough for You?
 On the Hidden Risks of Soundex-Based Name Searching

Frankie Patman and Leonard Shaefer

© 2001-2003 Language Analysis Systems, Inc.
2214 Rock Hill Road, Suite 201

Herndon, VA 20170
www.las-inc.com

Contents

I. Introduction
II. Description of Soundex
III. Evaluations of Soundex-type algorithms
IV. What Soundex cannot do
V. Improvements over Soundex
VI. An architecture for next-generation name searching
VII. Conclusion
VIII. Appendix of examples

I. Introduction

Despite many remarkable advances made recently in the automated processing of natural
languages, automated processing and matching of names in databases or free text has
languished for many decades without significant theoretical or practical advances.

The problem to be solved is a familiar one for many people: a customer is entered in one
database with the surname “Rodgers,” and in a different database as “Rogers.” A client's
name is recorded as “Dayton,” but should actually be spelled “Deighton.” A Chinese
family has one set of information recorded under the surname “Xiao,” and another under
the surname “Hsiao.”

Globalization of trade and the ever-growing ethnic diversity of the American populace
combine to transform what were once marginal cultural issues into crucial challenges for
many software engineers and IT professionals. While it may be possible in some
instances simply to work around problems of name complexity by relying on other types
of information, valuable information and competitive advantages are often lost in the
process. This loss grows still more evident when the trend towards more personalized
communications and customer relationship management are considered. Getting names
right is a key skill for any organization, no matter what its mission may be. And never
has the challenge of dealing with variations in name spelling been greater than it is today.

Efforts to deal with the complexity of names precede the rise of data processing by a
good half-century. The earliest attempt at coping with name variation was the Soundex

http://www.las-inc.com/

Is Soundex Good Enough for You?

matching algorithm, developed in the early years of the 20th century as an aid for manual
filing of U.S. Census records. The original Soundex method (as well as its many
variants) was implemented as a software-based algorithm, and is today perhaps the most
widely used alternative to exact-matching when names are involved in automated search
and retrieval systems.

Soundex is indeed a hardy and long-lived technique, and has much to recommend it: it is
non-proprietary, relatively fast, efficient and generally effective for certain well-known
types of spelling variation associated with many commonly encountered names. Best of
all, Soundex is free. It comes as a built-in function in many DBMS products,
programming languages and data management tools. No surprise, then, that it is the tool
of choice for many application developers who must address the need to match, search
and retrieve names.

However, Soundex proves in practice to be limited in dealing with many kinds of
variation inevitably present in collections of names. This paper will point out and
exemplify several key areas where the Soundex name-matching algorithm performs
poorly. Subsequently, an alternative approach to the automated name-matching problem
will be described.

The goal of this paper is to clarify the hidden risks that application and database
developers assume when relying primarily on Soundex as a means for matching and
retrieval of names.

II. Description of Soundex

The term “Soundex” actually covers several variations of an algorithm first developed
and patented by Robert C. Russell in 1918. Most versions of Soundex convert a surname
into a code consisting of the first (leftmost) letter of the surname, followed by three (or
more in some cases) digits. The digits are assigned according to a pre-determined
grouping of consonants, where the consonant groups share phonetic features (that is,
sound similar in one or more ways). This is the key concept behind Soundex: a constant
relationship between letters and sound should assure that similar-sounding names are
assigned the same code.

The standard Soundex algorithm defines the following groups:

Letter Code
B,F,P,V 1

C,G,J,K,Q,S,X,Z 2
D,T 3
L 4

M,N 5
R 6

H,Y,W (omitted)
A,E,I,O,U (omitted)

©2001-2003, Language Analysis Systems, Inc. All Rights Reserved. 2

Is Soundex Good Enough for You?

In this canonical algorithm, the leftmost letter is always retained, and all non-initial
vowels as well as non-initial H, Y, and W are omitted. Only one digit is used for
consecutive letters that result in the same code (e.g., CK = 2, not 22); codes with more
than three digits are truncated to the leftmost three digits; and codes for names with fewer
than three consonants are padded with zeros (e.g., PEEL = P400). The large number of
characters in category 2 results from overlapping relationships between consonants. The
letter “C,” for example, is related to both “S” (which is in turn related to “Z”) and “K”
(which is related to “G” and “Q”).

Soundex allows names with similar pronunciations but disparate spellings to be retrieved
from a single query. For example, PATER will also retrieve PAIDER (both have
Soundex Code P360), SOMERS will retrieve SUMMERS and SOMMARS (all with
Code S562), and GARDNER will match GARDINER and GARTNER (Code G635).

Variations of the original Soundex method were later introduced as limitations became
apparent. These include techniques such as breaking the consonant groups into more
closely related sets (e.g., {B,P}, {F,V}, {C,K,S}, {G,J}, {Q,X,Z}, {D,T}, {L}, {M,N},
{R}); allowing for more than three digit places; coding certain consonant clusters that
represent a single sound as a single digit (e.g., TCH, DG); creating multiple codes for
consonant clusters with multiple pronunciations (e.g., CH, as in ‘Christian’ and
‘Charlotte’); and coding initial letters just like other letters (e.g., initial C and K would
have the same code, so that ‘Kerr’ and ‘Carr’ would match).

All versions of Soundex attempt to capture phonetic similarities without taking into
account the surrounding context in which a letter occurs, so that a numeric value can be
assigned to individual consonants regardless of letters that precede or follow it. Later
attempts to offset this lack of contextual information in the original Soundex algorithm
include the Phonex and the Daitch-Mokotoff Soundex system, both of which make
limited use of contextual information in determining which numeric codes to assign to a
name.

A non-phonetic compression algorithm was developed by Leon Davidson in the early
1960’s for use in airline passenger tracking systems. Davidson’s algorithm simply drops
all vowels, as well as double consonants and the letters H, Y, and W. It does not group
consonants in any way. Studies of this method have not shown it to be more effective
than Soundex in general (Hermansen 1985).

The computational benefits of Soundex-type algorithms are easy to see: by exchanging a
name for a code, all variant spellings of the name can be expected to share that same
code, allowing a relatively efficient search of a small subset of a database, versus "brute
force" evaluation of every name as a potential match. Soundex keys are typically used to
form an index for data implemented in relations DBMS products, allowing very fast key-
based retrievals of a (theoretically) small number of potentially matching names.

©2001-2003, Language Analysis Systems, Inc. All Rights Reserved. 3

Is Soundex Good Enough for You?

III. Evaluations of Soundex-type algorithms

While it is certainly compact and efficient, Soundex-type approaches still fall well short
of solving many of the problems associated with searching for names. Two recent
studies looked at the performance of the basic Soundex algorithm, using statistical
measures to gauge accuracy. Alan Stanier (September 1990, Computers in Genealogy,
Vol. 3, No. 7) extracted all 411,716 surnames from the 1851 U.S. Census sample and
linked related name forms based on information provided in a dictionary of surnames.
Calculating search results for each name in the sample, he found that only thirty-three
percent of the matches that would be returned by Soundex would be correct. Even more
significant was his finding that fully twenty-five percent of correct matches would fail to
be discovered by Soundex.

A second study by A. J. Lait and B. Randell (1996) compared the performance of several
name-matching algorithms, including the basic Soundex method. Searches were
conducted on a data set of 5600 unique surnames, chosen to represent names beginning
with each letter of the alphabet at a frequency of occurrence reflecting actual alphabetic
distributions of names, and including as well names of varying lengths. The study found
that Soundex (judged to be the best of the four algorithms compared) returned only
36.37% of the actual correct matches, and that more than sixty percent of names that
were correct matches for query names were not returned.

Studies such as these raise serious questions about whether it is appropriate to use
Soundex as the basis for name-searches in applications where accuracy, completeness
and efficiency are crucial. For a significant percentage of search transactions, there is a
considerable risk that critical information may lie buried within a database, undiscovered
by searches depending on Soundex. Soundex-based name search systems place an undue
burden on the user, who must try various strategies in order to offset the rigid constraints
of a fixed letter-to-sound relationship that lies at the very heart of key-based name
retrievals.

While it is certainly true that a key-based search relying on Soundex can render results
quickly, this efficiency is largely lost if each transaction must be repeated many times by
the user, in order to produce acceptable results.

The studies cited above make the general case that one cannot rely solely on Soundex if
the goals of a name search include finding as many of the related names as possible, or if
the time needed to dig through potentially large numbers of irrelevant returns to find the
desired records is not available. They say very little, however, about specific factors that
constrain Soundex's accuracy and efficiency.

In the next section, we will present eleven problems that can result in crucial connections
between names being missed or obscured. Some of these focus on design limitations
within the Soundex method, and others relate to the content or structure of names in
databases or free text.

©2001-2003, Language Analysis Systems, Inc. All Rights Reserved. 4

Is Soundex Good Enough for You?

IV. What Soundex cannot do

Each of the issues discussed below is illustrated with actual returns from Soundex
searches in sample databases. The example queries and returns are found in the
appendix.

1. Dependence on initial letter. The Soundex algorithm uses the first letter of a name as

a key component of the code it generates to represent the name. Names that do not
begin with the same letter will never match each other. A data entry operator hearing
the name “Korbin” might type in the much more common “Corbin.” Although
“Korbin” may be in the database, it will not be returned by a standard Soundex search
on “Corbin.” (Appendix, item 1.)

2. Noise intolerance. Because names are resistant to standard data-validation and data-

quality techniques, random keying errors are unavoidable in collections beyond trivial
size. If a database record contains the name “Msith” (“Smith” with a common
transposition keying error), Soundex cannot overcome this simple transposition when
searching for the correctly spelled “Smith.” If “Hubbins” was really meant to be
“Huggins,” Soundex will be of no use. In general, Soundex relies on predictable
sound-to-letter relationships, so it will not overcome any random spelling variations,
unless these just happen to coincide with a predictable pattern. (Appendix, item 2.)

3. Differing transcription systems. Languages written in non-Roman scripts may use

multiple systems for converting names from native to Roman characters. One
common Chinese name may be correctly written as either “Hsiao” or “Xiao” in its
romanized form. “Chaiwat” and “Chaivat” represent the same Thai name. The same
Russian surname may occur as "Ivanov" or "Ivanoff" or even as "Iwanow.” The
Soundex codes for the members of these spelling variants do not always match each
other, so one form of the name will not reliably retrieve the others. Soundex was
never intended to cope with the range of cultural diversity and orthographic
complexity that typify enterprise databases in today’s global economy, nor with the
many standards used to convert names from their native written form into the Roman
(A-Z) alphabet used by most computerized name search systems. (Appendix, item 3.)

4. Names containing particles. Names in many cultures contain optional or

supplemental elements that may be present in one instance of a name, but missing
from the next. The Arabic name “Alhameed,” for example, can also appear without
the particle “al” as “Hameed” (or “Hamid,” “Hamed,” etc.). Both of these variants
can refer to the same person. Soundex provides no means for accommodating such
types of variation, but rather codes them as two different, non-matching names, with
the result that two closely related variants do not retrieve each other. (Appendix, item
4.)

5. Perceptual differences. When names in a database or text document collection stem

from oral communication, many types of perceptual variation can influence the
subsequent written form a name assumes. The Russian name “Tkachev” may, for

©2001-2003, Language Analysis Systems, Inc. All Rights Reserved. 5

Is Soundex Good Enough for You?

instance, be found as “Kachov” or “Tekacheff,” since non-Russian speakers may not
perceive the initial “T” sound consistently, or at all. Similarly, the name “Pfeiffer”
could be mistaken for “Fifer,” “Phifer,” “Peiffer,” “Pifer,” or “Pipher.” A query on
“Pfeiffer” using Soundex, however, will not retrieve any of these potentially related
names, nor will a variant like “Peiffer” retrieve “Pfeiffer.” (Appendix, item 5.)

6. Silent consonants. Soundex cannot capture the phonetic similarity between names

with silent consonants and alternate or simplified spellings of those names in which
these consonants are omitted. An uncommon name like “Coghburn” may be spelled
as “Coburn,” or “Deighton” may be recorded as “Dayton.” Soundex assigns different
codes to these pairs, guaranteeing that they can never match each other. (Appendix,
item 6.)

7. Name syntax variation. Differing name structures (models) are used by various

cultures and societies. The familiar “first-middle-last” model used with many North
American and Western European names fits poorly with names from many other
cultures around the world. As a result, names may be mapped inconsistently into the
fields of database records. The name “Mohamed Afzal Aziz” might be found in one
database record with “Mohamed” as the first name, “Afzal” as the middle name, and
“Aziz” as the last name. In another record “Mohamed Afzal” might be in the first-
name field and “Aziz” in the last-name field, with no middle name. In still another
record, “Mohamed” might be entered as the first name and “Afzal Aziz” as the last
name. Soundex was not designed to deal with this type of variation in the form of a
name. (Appendix, item 7.)

8. Name equivalence. Some names have related forms that cannot be associated by any

sort of compression or fuzzy-match logic. The birth records for a “Peggy Smith,” for
example, are likely to read “Margaret Smith.” In parts of Asia, names based on
Chinese characters may have completely different pronunciations across different
dialects. For example, the names “Ng” and “Wu” are both written with the same
Chinese character, and both may be used to refer to the same person under certain
circumstances. Soundex provides nothing to aid in linking names which, though
understood as being equivalent, are nonetheless written in very different ways.
(Appendix, item 8.)

9. Initials. Initials are often substituted for full names. Records for a “Michael

Kissinger” and “M. Kissinger,” for example, may well belong to the same person.
However, a standard Soundex query on “Michael Kissinger” will not retrieve “M.
Kissinger,” and vice versa. (Appendix, item 9.)

10. Unranked, unordered returns. Because its goal is to group names by assigning a

common code, Soundex does not have the capability to measure the degree of
similarity between a pair of names found within a group. This means that returns
from a Soundex-based query cannot be ranked and presented best-first—names are
typically returned as they are found in the database. Name variants that could
plausibly refer to the same individual may be found well after names which are

©2001-2003, Language Analysis Systems, Inc. All Rights Reserved. 6

Is Soundex Good Enough for You?

clearly irrelevant, forcing the user to scan all returns from top to bottom. On a test
query on “Deighton,” for instance, the exactly matching surname was last in a return
list of seventeen names, preceded by such unlikely candidates as “Desiyatnikov” and
“Degaetano.” A query on the name “Criton” returned eighty-seven names; the exact-
match was eighty-first in the return list. (Appendix, items 10 and 11.)

11. Poor precision. The Soundex algorithm reduces distinctions between strings of

letters to such a degree that many obviously dissimilar names are typically returned
for each search transaction. For example, “Courtmanche,” “Corradino,” “Cartmill,”
and “Cortinez” were returned on a query for “Criton.” This superfluous information
has very real costs for application designers, in terms of processing resources
consumed, response times and user satisfaction. Worse yet, the precision degrades as
the database size increases, for many typical Soundex applications. (Appendix, items
10 and 11.)

V. Improvements over Soundex

Several of the problems mentioned above are further exacerbated by the multi-cultural
make-up of modern databases. John Hermansen (1985) notes that a fundamental problem
for Soundex and its derivatives is that they are applied as a universal name-search
method. An algorithm designed largely for English names is less well suited to handle
names with sound patterns and structures as diverse as Arabic, Chinese, Thai, Hispanic,
and Russian, to name but a few. No single algorithm that relies on a single mapping of
sounds to letters can be expected to perform well across multiple linguistic systems,
especially not when some degree of transliteration has been involved.

One important improvement in name searching was implemented in 1963 within NYSIIS,
the New York State Identification and Intelligence System. A major innovation of this
system is its culture-specific search methodology, intended to accommodate the large
number of Hispanic names within the NYSIIS database. Based on their observations of
the syntax and sounds of names within their database, the developers of NYSIIS created
search techniques that allowed names with multiple formats and spellings to match.

For example, a query on the name “Rodrigues Y Vega Y Romano, Juan” produces the
variant forms “rodriguesyvegayromano, juan,” “rodrigeusvegaromano, juan,” “rodrigues,
juan,” “vega, juan,” and “romano, juan” (Hermansen, 1985). These forms are then
processed by a modified Soundex algorithm and a sophisticated set of probability tables
that are rarely implemented in systems that seek to imitate NYSIIS. This attention to the
nature of the names in the databases to be searched enabled NYSIIS to attain precision
and recall levels that exceeded what Soundex alone had been able to achieve.
Nevertheless, the limitations of the NYSIIS algorithm and the increasing diversity of the
cultures represented by the names in their growing data base forced New York to
abandon the NYSIIS system in 1998.

The early operational success of NYSIIS showed that name search results can be
improved if the search technology includes knowledge of the cultural particularities of

©2001-2003, Language Analysis Systems, Inc. All Rights Reserved. 7

Is Soundex Good Enough for You?

the names in the particular database to which it is to be applied. This success also raises
the question of whether the Soundex methodology can be adapted for a particular
database to improve results. Lait and Randell (1996) set out to answer just this question
after finding that Soundex recall rates were disappointing (see above). Using the same
database against which Soundex was tested, they progressively altered the Soundex code
until the maximal rate of accurate returns was found, with the minimal increase in
incorrect matches. The resulting algorithm was titled “Phonex.” Phonex was able to
return 51.79% of the correct matches in the database, as opposed to Soundex’s 36.37%.
While this is an improvement, it still leaves almost half of the correct matches
undiscovered. Lait and Randell also note that neither corrupted data nor multi-ethnic data
is addressed by their improved algorithm.

VI. An architecture for next-generation name searching

Reconsidering the eleven areas discussed above where Soundex has demonstrable
limitations, we can now formulate a set of characteristics that an advanced name search
system would need to possess, in order to meet the challenges posed by large, multi-
cultural databases in which both predictable and random name-spelling variations are
present in a significant number of records.

1. Culture-specific matching criteria. Naming systems differ significantly from one

culture to the next—in the relative order in which parts of a name appear, in the
consistency with which they are written in romanized form, in the way they are
abbreviated, in which parts are considered mandatory for identification. To
accurately identify all potential matches, an automated name-search system must
account for a name's culture of origin. Such knowledge will allow the correct set of
matching techniques to be applied to the name. Ideally, such a cultural identification
could be accomplished automatically, to add speed and consistency that humans
cannot be expected to provide.

2. Automatic application of linguistic rules for the culture/language context. This step

may comprise a number of processes. A full name must be parsed, and possible word
order variations and shortened forms may be generated. Spelling variants for each
part of the name must be calculated. There are many possible approaches to this
step—rule-based, algorithmic, statistical/probabilistic, or combinations of these.
Furthermore, variants may be based on either phonetic (pronunciation) or alphabetic
similarity

3. Noise tolerance. Once culture-specific knowledge has been used to isolate and align

those portions of the name to be compared, the character-level comparisons must take
into consideration the possibility of random keying, which correspond to no
orthographic or phonological principle.

4. Recognition of equivalent but dissimilar name variants. In most cultures, names are

found which are understood and accepted as interchangeable equivalents, perhaps

©2001-2003, Language Analysis Systems, Inc. All Rights Reserved. 8

Is Soundex Good Enough for You?

used in different social circumstances. Nicknames and pet names are prominent
examples of given-name (first-name) variants in wide use among English-speaking
and Western European societies. An advanced name-searching system cannot rely on
matching only the "official" forms of a name, especially when many applications are
tasked with merging data drawn from a wide variety of sources and formats.

5. Ranked returns, with the best matches presented first. Matching names that are most

similar to the query name should be returned before those that are less similar. A
name search system must include a means to measure the degree of similarity
between two names and rank them accordingly.

6. Statistical and probabilistic search aids. Many advances in the field of Information

Retrieval have special applicability to the problem of name searching. In particular,
knowing the relative frequency of a specific surname within a particular population
would allow a correspondingly greater emphasis to be placed on the discriminatory
value of the given-name information in a search transaction. To use such statistical
and probabilistic information effectively, it would need to be closely integrated with
the matching and ranking logic of the search algorithm. This type of information
becomes crucial when dealing with Korean names, since approximately 75% of the
population share the top half-dozen surnames.

7. Syntactic flexibility. Because names are particularly susceptible to misinterpretation

when they are captured in electronic form from oral or written origins, differences in
white-space placements or even field placements (within a database record) should be
overcome to a reasonable degree in an advanced name searching system. In
particular, Oriental names whose order is accidentally reversed and Middle Eastern
names with prefixes mistakenly classified as middle names should be reliably and
efficiently matched with their more standard counterpart versions.

8. Capacity for adjustment and tuning. Name searching is a non-deterministic

problem, meaning that it is not always possible to obtain definitive results.
Practically speaking, one person's ideal search results may be regarded as poor by
another person. Exact-matches are easy to identify, but there are many shades of
similarity and equivalence possible to discern among related names, so "good" search
results may depend more than anything on the linguistic and cultural knowledge of
the user. Moreover, many collections of names are highly volatile, with a significant
number of records being added and deleted on a continuing basis. This means that an
advanced name searching system should provide numerous mechanisms for adjusting
the quality and quantity of the matches it produces, so that a balance-point can be
reached among the conflicting demands of speed, accuracy, and efficiency within any
organization. There is no single best way to find all related names and no unrelated
names in any name collection of reasonable proportions. An advanced system might
also offer various self-test and calibration mechanisms, so that users and maintainers
can converge reasonably quickly on a group of settings for all adjustable parameters
that supports the mission, operational setting and business rules addressed by name
searching transactions. Such utilities might also advise maintenance personnel

©2001-2003, Language Analysis Systems, Inc. All Rights Reserved. 9

Is Soundex Good Enough for You?

whenever the name collection has shifted enough in its cultural/ethnic characteristics
to necessitate a recalibration, as when bulk updates are performed.

It is clear that Soundex -- and indeed its many name-grouping successors -- were not
intended to address the range of name-related issues presented in the foregoing
paragraphs. It is not so much that Soundex fails to deal with these problems; rather,
Soundex does not contemplate such issues at all. As a result, they are either ignored in
Soundex-based search systems (with undefined and latent risk for their owners), or else
they are addressed in piecemeal fashion with custom application code that "wraps
around" Soundex. Not wanting to become entangled in the many subtle complexities of
name searching, many application developers simply follow a strategy of avoidance,
reducing support for name-based searches or removing it altogether.

VII. Conclusion

This paper has shown that using Soundex as the basis for a name-searching application is
both easy and potentially risky, especially for application developers. Perhaps the most
costly result of relying on Soundex for searching and matching of name data is the
potential for relevant records to be overlooked; more insidious, but equally problematic is
the gradually worsening degree of precision exhibited in search transactions as the
database size and complexity grows. Several studies have shown that a significant
percentage of correct name-matches in test databases cannot be returned by Soundex.

For enterprises in which accurate data retrieval using names is a crucial aspect of one or
more business processes, it will eventually become necessary to overcome the well-
documented limitations of Soundex-based searches. The Phonex experiment showed,
however, that improvements in retrieval rates are typically marginal, and may still result
in search accuracy below required levels. As more and more custom application code is
wrapped around the core Soundex search mechanism to mitigate its deficiencies,
development and maintenance costs can grow quickly. More and more resources are
required to provide consistent levels of user satisfaction and productivity, as database size
and cultural complexity increase.

A more effective name search strategy must be designed from the outset for large, multi-
cultural databases, must incorporate much more than letter-to-sound information, and
must accommodate both random and predictable variation in the spelling of names, if it is
to deliver consistent, accurate results as the data to be searched grow in size and cultural
diversity over time.

Soundex has a seductively low entry-cost as a name-searching solution. It is free, it is
easy to understand, and it is simple to implement, especially when the database to be
searched is fairly small. Application designers should consider carefully, however,
whether or not deferred costs for subsequent life-cycle maintenance and enhancements,
together with the generally hidden risks of failed searches and superfluous matches for
end-users might outweigh these initial benefits.

©2001-2003, Language Analysis Systems, Inc. All Rights Reserved. 10

Is Soundex Good Enough for You?

References

Hermansen, John C. 1985. Automatic Name Searching in Large Data Bases of
 International Names. Washington, DC: Georgetown University
 (dissertation).

Lait, A.J. and B. Randell. 1996. “An Assessment of Name Matching Algorithms.”
 University of Newcastle Upon Tyne.
 Available at www.cs.ncl.ac.uk/research/trs/abstracts/550.html

Stanier, Alan. 1990. “How Accurate Is Soundex Matching?” Computers in Genealogy
 3:7.

©2001-2003, Language Analysis Systems, Inc. All Rights Reserved. 11

http://www.cs.ncl.ac.uk/research/trs/abstracts/550.html

Is Soundex Good Enough for You?

APPENDIX

The name searches demonstrated here were conducted on two databases using ANSI-
standard SQL queries involving the Soundex function, as implemented in several leading
commercial RDBMS products. The first database is a set of surnames compiled by the
U.S. Census Bureau from 1990 census respondents. This database (referred to within
this paper as Cen90) contains over 88,000 unique entries. The second database contains
names from residential telephone listings for the 703 area code (Northern Virginia) from
the year 1996. This set of names (referred to as Nms703) contains about 520K entries. A
significant difference in the two databases is that Cen90 contains only surnames, while
Nms703 contains full names (and sometimes household names) with the surname (family
name) and the given-name(s) in separate fields.

1. SQL/Soundex, Cen90, Query = KORBIN

Initial-letter non-matches: The name “Corbin” is in the database but is not
retrieved.

Matching Name Name-ID
KARPINSKI 10341

KIRVEN 19606
KERVIN 20789
KERFIEN 23709

KRUPINSKI 28777
KARBAN 35497
KARPIN 37698

KARPINSKY 40342
KRIVANEK 43203
KURPINSKI 56099

KURBAN 56105
KIRVIN 56295

KORVIN 62734
KRUPANSKY 62672

KARPINEN 62949
KARPEN 62950

KARVONEN 71510
KRABBENHOFT 82633

KRUPINSKY 82545
KRIVANEC 82571
KARABIN 83136

KRUPPENBACHER 82544
KORBIN 82709

SQL query on CORBIN:
SQL> SELECT *

 2 FROM CENSUS90SN
3 WHERE SURNAME='CORBIN';

SQL response:

 1231 CORBIN

©2001-2003, Language Analysis Systems, Inc. All Rights Reserved. 12

Is Soundex Good Enough for You?

2. SQL/Soundex, Cen90, Query = SMITH.
Noise intolerance: The listing “SMITHJ” is in this database but is not returned.

Matching Name Name-ID

SMITH 1
SNEED 1514
SMOOT 3138
SNEAD 3343

SHUMATE 3792
SMYTH 4106
SANDY 5477
SAND 6731

SANTO 7300
SANTOYO 7512
SMYTHE 7719
SMTIH 8345
SWINT 9276

SUNDAY 10290
SNODDY 10422
SINNOTT 10978
SMITHEY 11153

SMIT 12725
SMIDT 13405

SANTEE 13657
SHAND 13923
SANT 14771
SUND 15649

SMEAD 15660
SANDE 16742
SUNDE 18909

SUMMITT 18910
SANTA 18951

SMIDDY 20523
SANTI 21264

SANDHU 21266
SAINT 21927

SAMET 23424
SENNETT 23396

SANDT 26093
SAMMET 26095
SANDA 28387

SHIMADA 29653
SUNDT 31036

SAMUDIO 31205
SANDAU 32925
SANTOY 32919

SNIDE 32813
SANDO 32922

SMITHEE 34689
SINNETT 36826
SINEATH 36827

SMID 39190
SONDAY 42026

SANTOYA 42233
SINOTTE 42071

SYNNOTT 41910
SHINDO 42105

SANDOW 42238
SENNOTT 42137
SHANDY 42125
SANDOE 42239
SWANDA 45221
SANTAI 42235
SUMIDA 45235

SHINODA 45433
SENATE 45487

SHOEMATE 45431
SENATO 49465
SOMODI 49304

SHMIDT 49416
SEMIDEY 49467

SMIDA 49327
SONODA 49301

SAMIT 49623
SWANT 53938
SAMAD 54495
SENTI 60360
SANDI 60590

SNEATH 60161
SMIHT 60166

SNOWDY 60153
SAMIDE 60597
SANTY 60567
SHONT 60281
SENTA 68008

SANNUTTI 68285
SINDT 67824

SANDAY 68297
SMAYDA 67753
SAINTE 68348
SNITH 67734

SAINATO 68350
SMITTY 78004
SMITHE 78005

SOMDAH 77935
SANTIO 78754
SNODE 77989
SANTTI 78748

SAMMUT 78797

 SQL query on SMITHJ:
 SQL> select *

 2 from census90sn
3 where surname='SMITHJ';

SQL response:

 39189 SMITHJ

©2001-2003, Language Analysis Systems, Inc. All Rights Reserved. 13

Is Soundex Good Enough for You?

3. SQL/Soundex, Cen90, Query = XIAO
Differing transcription systems: The alternative transcription “HSIAO” is in the database
but is not returned.

Matching Name Name-ID
XU 10540
XIE 17912

XIAO 26915
XIA 34382
XUE 48597

 SQL query on HSIAO:
 SQL> select *
 2 from census90sn

3 where surname='HSIAO';

SQL response:

 35552 HSIAO

©2001-2003, Language Analysis Systems, Inc. All Rights Reserved. 14

Is Soundex Good Enough for You?

©2001-2003, Language Analysis Systems, Inc. All Rights Reserved. 15

4. SQL/Soundex Cen90, Query = ALHAMEED
Particles: The variants “HAMID” and “HAMED” are in the database but are not
returned. Note: The variant “Hameed” is not in the census90sn database table.

Matching Name Name-ID
ALMEIDA 3153

ALMODOVAR 10536
ALLENDER 13870
ALAMEDA 14429
ALMEDA 21094

ALLINDER 23261
ALMADA 23260
ALLENDE 24951

ALLENDORF 32487
ALMETER 38705
ALNUTT 41491

ALMEYDA 38704
ALMODOVA 44731

AALAND 75675
ALUMMOOTTIL 75524

ALLNUTT 75543
ALLHANDS 75545
ALHAMEED 88631

ALAND 88660
ALAMEIDA 88662

ALEYANDREZ 88636
AALUND 88798

 SQL query on HAMID:
 SQL> select *

 2 from census90sn
3 where surname='HAMID';

SQL response:

 19656 HAMID

Is Soundex Good Enough for You?

5. SQL/Soundex, Cen90, Query = PFEIFFER
Perceptual differences: The variants “PEIFER,” “PEIFFER,” “PIFER,” “PEFFER,”
“PIEFFER,” “PHIFER,” “PYFER,” “FIFER,” “PIPHER,” and “PIEFER” are all in the
database but are not returned.

SQL/Soundex hits
Matching Name Name-ID

PFEIFFER 2766
PFEIFER 4240
PFEFFER 7308

PFEUFFER 45910
PFEFFERLE 45911
PFIEFFER 61210

PFIFER 79873
PFEFFERKORN 79875

SQL query on PEIFER SQL query on PHIFER:
SQL> select *
 from census90sn
 where surname='PEIFER'

SQL> select *
 from census90sn
 where surname='PHIFER'

SQL response: SQL response:
27279 PEIFER 4746 PHIFER

6. SQL/Soundex, Cen90, Query = COGHBURN
Silent consonants: The name “COBURN” is in the database but is not returned.

Matching Name Name-ID
CASPER 2842
COSPER 7422

COGBURN 11257
CASPERSON 15240
COCKBURN 15886
CASEBEER 22390
CASPERS 23164
CHESBRO 25733

CHESEBRO 38390
CASEBIER 38413
CZAPOR 41022
CASPARI 44299

CASPARIS 47993
CASPERSEN 52520
CASPARIAN 58085

CHEESEBROUGH 58019

CHESBROUGH 58014
CASBEER 65110

CASBARRO 65111
CASBURN 65109

CHEESEBORO 74204
CASPAR 86956

CASPARY 86955
CZUPRYNA 86332

SQL query on COBURN:
SQL> select *

 2 from census90sn
3 where surname='COBURN';
SQL response:

 2356 COBURN

©2001-2003, Language Analysis Systems, Inc. All Rights Reserved. 16

Is Soundex Good Enough for You?

7. SQL/Soundex, Nms703, Query = AFZAL AZIZ, MOHAMED
Name syntax variation: A listing for “AZIZ, MOHAMED AFZAL” appears in the
database but is not returned.

Matching Name Name-ID
AFZAL, MOHAMMAD 3401
AFZAL, MOHAMMAD 3402
AFZAL, MOHAMMAD 3403
AFZAL, MOHAMMAD A 3404
AFZAL, MUHAMMAD 3405

Cf. SQL query on AZIZ, MOHAMED AFZAL:

SQL hits
Matching Name Name-ID

AZIZ, MOHAMED AFZAL 20529

8. SQL/Soundex, Nms703, Query = DEIGHTON, BILL
Equivalent names: Two listings for “DEIGHTON, WILLIAM” are in the database but
are not returned. (The database also contains “DAYTON, BILL,” but this is not
returned.)

No SQL/Soundex hits

Cf. SQL queries on WILLIAM DEIGHTON and BILL DAYTON:

SQL hits
Matching Name Name-ID

DEIGHTON, WILLIAM 900056
DEIGHTON, WILLIAM 900055

SQL hits
Matching Name Name-ID
DAYTON, BILL 900057

©2001-2003, Language Analysis Systems, Inc. All Rights Reserved. 17

Is Soundex Good Enough for You?

9. SQL/Soundex, Nms703, Query = KISSINGER, MICHAEL
Initials: The database contains a listing for “KISSINGER, M.,” but this is not returned.

Matching Name Name-ID
KICHINKO, MICHAEL N 235497
KISSINGER, MICHAEL & DENISE 240408
KUZMIK, MICHAEL D DDS 249637
KUSHNICK, MICHAEL G 249445
KUZMIK, MICHAEL 249635
KUZMIK, MICHAEL D DDS 249636
KUZMUK, MICHAEL & ELIZABETH 249641

Cf. SQL query on M. KISSINGER:

SQL hits
Matching Name Name-ID
KISSINGER, M 240407

©2001-2003, Language Analysis Systems, Inc. All Rights Reserved. 18

Is Soundex Good Enough for You?

10. SQL/Soundex, Cen90, Query = DEIGHTON
Unranked, unordered returns: The query name is last in this return.

Matching Name Name-ID
DUSTIN 7542
DISTIN 24738

DEGAETANO 30540
DAUGHTON 30548
DOUGHTON 32108
DIGAETANO 33923

DIGHTON 40920
DUSTMAN 43958
DESTINE 52180

DESATNIK 64616
DUSTON 73325
DESTINA 73612

DESIYATNIKOV 85996
DISTANCE 85868
DICKSTEIN 85932
DESTIME 85982

DEIGHTON 86161

©2001-2003, Language Analysis Systems, Inc. All Rights Reserved. 19

Is Soundex Good Enough for You?

©2001-2003, Language Analysis Systems, Inc. All Rights Reserved. 20

11. SQL/Soundex, Cen90, Query = CRITON
Poor precision. Exactly matching name appears nearly at the end of the returns.

Matching Name Name-ID

CARDENAS 781
COURTNEY 1273
CARDONA 2031
CARDEN 3533

CRAYTON 3723
CRITTENDEN 3976

CURTIN 4029
CURETON 5676
CARDINAL 7622

CARDIN 7693
CARDINALE 9050

CRITTENDON 10933
CARDONE 11100

COURTEMANCHE 11251
CORTINAS 11398
CHRETIEN 12082
CORDON 12246
CORTINA 18281
CERTAIN 20995

CROWDEN 22362
CARDON 22395

CARDAMONE 24840
CORRADINO 25721
CARTMELL 27892
CREEDEN 29155
CORDNER 29161
CARADINE 29226
CARTMILL 27891
CURTNER 29140
CARTHEN 29219
CARTON 30640
CRITTON 34000

CARTHON 32273
CARDENA 34099
CRATON 36040

CORTNER 36049
CARRADINE 38419
CARDIMINO 41162

CARTEN 41152
CORRADINI 41063

CARDINE 41161
CARODINE 41153
CARDANI 41163
CORTON 41059

CREEDON 44193
CHRITTON 44257

CROUTHAMEL 44184
CORDONE 47874

CARRETINO 52535
CARDENAL 52548

CARTIN 52530

CAROTENUTO 52536
COURTNAGE 52344

CRETEN 57839
COURTENAY 57857

CORDANO 57890
CARATTINI 58116

CARDNO 58108
CARDONIA 58107

CRATIN 64839
CARDINALI 65134

CORDONNIER 64886
CARDONO 65132
CRUDEN 64808

CORDONA 64887
COURTON 73972
CORTINEZ 73991
CORDENAS 74011
CORRIDAN 73996
CARTNER 74330

CARDINALLI 74351
CARDONI 87019

CARDENOS 87023
CRATION 86436

CORRIDONI 86494
CARRIDINE 86990

CERDAN 86891
CARIDINE 87017
CRITON 86415
CARTAN 86983
CHIRDON 86767

CARTHENS 86981
CARDINO 87021

CARDINAS 87022
CARADONNA 87030

	Is Soundex Good Enough for You? On the Hidden Risks of Soundex-Based Name Searching
	6 Feb 2003 Frankie Patman and Leonard Shaefer
	Contents
	I. Introduction
	II. Description of Soundex
	III. Evaluations of Soundex-type algorithms
	IV. What Soundex cannot do
	V. Improvements over Soundex
	VI. An architecture for next-generation name searching
	VII. Conclusion
	References
	APPENDIX
	1. SQL/Soundex, Cen90, Query = KORBIN
	2. SQL/Soundex, Cen90, Query = SMITH.
	3. SQL/Soundex, Cen90, Query = XIAO
	4. SQL/Soundex Cen90, Query = ALHAMEED
	5. SQL/Soundex, Cen90, Query = PFEIFFER
	6. SQL/Soundex, Cen90, Query = COGHBURN
	7. SQL/Soundex, Nms703, Query = AFZAL AZIZ, MOHAMED
	8. SQL/Soundex, Nms703, Query = DEIGHTON, BILL
	9. SQL/Soundex, Nms703, Query = KISSINGER, MICHAEL
	10. SQL/Soundex, Cen90, Query = DEIGHTON
	11. SQL/Soundex, Cen90, Query = CRITON

	
	LAS Title Page

